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Problem Background

Example 1: Nuclear-Norm Matrix Completion

m}n IX][« s.t. Pa(X) =Pa(M)
is equivalent to the semidefinite programming (SDP) form:

1% X
. 1 1 _
X wglvb 5 tr(Wi+Ws)  s.t. {XT WZ] =0, Pa(X)="Pa(M).

» Feasible set is positive semi-definite cone (IE3E#,
PSD) . i.e., only the magnitudes of singular values are
controlled and phase is ignored.



Motivation

» In many real-world applications(e.g. multivariable control
systems, impedance circuit synthesis, robust control) the
phase of matrix entries must be bounded as well as their
magnitude.

> We therefore introduce a more general phase-bounded cone
(FBALERHE) SS[a, 8] and extend matrix completion /
decomposition theory from PSD to the joint “magnitude +
phase” setting.



Phase-Bounded Cone SS|a, 3]
» numerical range: W(C) = {x"Cx| ||x]|2 = 1} C C.
» Minimum / Maximum Phase:
¢min(C) = min ey ) arg z, Pmax(C) = max,epy(c) arg z
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Definition
A complex matrix Cis in SS[a, (] if it is semi-sectorial and its
numerical range satisfies

aSSDmin(C)S(PmaX(C)SB; 0<5—Oé<71'.
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Methodology

Toeplitz Split
Any complex matrix C can be written as

C=Cy+ iCs, with Cy, Cs € H, (Hermitian).
Linear Map R, g

—sin « cosoz]
n

Rap = [sinﬁ —cosf3 ®©

It preserves sparsity patterns and is invertible for 0 <  — a < 7.



Methodology
Toeplitz Split

Any complex matrix C can be written as
C=Cy + iCs, with Cy, Cs € H, (Hermitian).
Linear Map R, g
—sina cosoz] :

Rap = [sinﬁ —cosf3 ®©

It preserves sparsity patterns and is invertible for 0 <  — a < 7.
Key Lemma

C
C € Sup = Rap [ H] € PSD x PSD
’ Cs —

positive semi-definite cone (IE3EHE)



Methodology
Toeplitz Split

Any complex matrix C can be written as

C=Cy+ iCs, with Cy, Cs € H, (Hermitian).
Linear Map R, g

R _ |—sina cos & 2
@B = | sinf —cosB|" "
It preserves sparsity patterns and is invertible for 0 <  — a < 7.
Key Lemma
Ces — R Ch € PSD x PSD
X
[Oé,ﬁ] anB CS N\ ;
positive semi-definite cone (IE3EHE)

» The lemma transfers PSD theory to the phase-bounded cone
via an invertible, pattern-preserving transform.



Graph-Constrained Matrices

Definition
Fix an undirected graph G = (V, E) on n vertices. Define

Cg":={Ce C™" | Cj=0 whenever (i,j) ¢ EUdiag}.

In other words, non-zero entries of C are allowed only on edges of
G (plus the diagonal).

Toy example:
Matrix pattern respecting

E=1{(1,2),(2,3)}:
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Methodology

(1) Phase-Bounded Completion

Given a partial matrix C whose known entries lie on E, decide
whether there exists

Ke Siap st Kj=C; (Y(ij)€E).

(2) Phase-Bounded Decomposition
Given a matrix C € CZ*", decide whether

C= Z Ck, Ck € Sja,g), rank(Cy) = 1, supp(Cy) C E.
k=1

» Both tasks generalise classical PSD completion/decomposition
to the phase-bounded cone S, g).



Four Fundamental Cones

Definitions

S¢ = C&"NS[a,5) (sparse phase-bounded matrices)

Pe:={CeCL" | (K| € Sja,5 V cliques KC G}

Ke:={CeCg"|IBeCE" C+BE Sz}

D¢ := {Z Ck ‘ Ck € Sa,5), rank(Cy) = 1, supp(Ci) C
K

» All four are closed, pointed, convex
cones.

» Dc C Sc C Ke C Pe.
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dual to Dg

dual to K¢



Chordal-Graph Characterisation

Main Theorem
For 0 < 8 — a < w and an undirected graph G, the following
statements are equivalent:

1. G is chordal(every cycle of length > 4 has a chord);

2. Dg = Sg;

3. K¢ ="Pe.

> Extends the PSD result to the phase-bounded cone S, g

» Provides a necessary & sufficient graph criterion for
phase-bounded completion and decomposition.

E

chordal non-chordal



Completion Criterion for Chordal Graphs

Corollary

Let 0 < 8 — a < 7 and G be chordal. A partial matrix C with
graph G admits a completion

K € Sja suchthat Kj= C;(i,j) € E(G)

iff every specified clique submatrix C[K] already lies in S, 3.

» Practical meaning: only maximal cliques need to be checked
—no global SDP.

» For banded or tree patterns this reduces to testing a few small
principal blocks.

5x5 banded graph (w = 2). Blue triangle = a maximal clique to-check.



Decomposition Criterion for Chordal Graphs

Corollary

Let 0 < 8 —a < and G be chordal. A sparse matrix C € C2*"
admits a rank-one sum

C = Z Cx;  Ck € Sja,5), rank(Cy) = 1, supp(Cy) € E(G)
1

iff the matrix itself already lies in the phase-bounded cone:

C e S[aﬂ].

O O O O

tree pattern (chordal). Blue edge = one rank-one component Cy.



Banded Graphs = Two PSD Sub-Problems

Key idea: transform one complex problem into two real,
band-preserving PSD problems, easy to solve.

Key fact for banded graphs (Lemma3.3 + Remark5.1)

Co = —sina Cy+cosa Cs € PSD,

CE Sap
Cg= sinff Cy—cosfCs € PSD.

» Band-preserving (same half-bandwidth w).

» Phase-bounded completion reduces to two banded-PSD
sub-problems, solvable in O(nw?) time.



Staircase Algorithm

Algorithm 5.1 (staircase fill): Start at the main diagonal and
successively complete principal submatrices of size

w—+1, w+2,...,n via Schur complements. The result H, is the
unique phase-bounded completion maximising det H.

n =8, w= 2 Blue = fill order.



Conclusions & Outlook

Takeaways

» Extended classical PSD completion/decomposition to
phase-bounded cones S, g

» Chordal graphs give iff criteria; banded graphs admit an
O(nw?) staircase algorithm and a det-max central completion.

Future Works
P Real-time applications in robust control and impedance circuit
synthesis.
» Scalable ADMM / primal-dual solvers for large S, 5-SDPs.
» Exploring matrix completion and decomposition methods for

other constrained graphs, including non-chordal and
non-banded graphs.



