
Matrix Completion and Decomposition
in Phase‑Bounded Cones

Ding Zhang Axel Ringh Li Qiu

SIAM J. Matrix Analysis & Applications
Vol. 46, No. 2 (2025)

DOI: 10.1137/23M1626529



Problem Background

Example 1: Nuclear-Norm Matrix Completion

min
X

∥X∥∗ s.t. PΩ(X) = PΩ(M)

is equivalent to the semidefinite programming (SDP) form:

min
X,W1,W2

1
2 tr(W1+W2) s.t.

[
W1 X
X⊤ W2

]
⪰ 0, PΩ(X) = PΩ(M).

▶ Feasible set is positive semi-definite cone （正半定锥,
PSD）. i.e., only the magnitudes of singular values are
controlled and phase is ignored.



Motivation

▶ In many real-world applications(e.g. multivariable control
systems, impedance circuit synthesis, robust control) the
phase of matrix entries must be bounded as well as their
magnitude.

▶ We therefore introduce a more general phase-bounded cone
（相位有界锥） SS[α, β] and extend matrix completion /

decomposition theory from PSD to the joint “magnitude +
phase”setting.



Phase-Bounded Cone SS[α, β]
▶ numerical range: W(C) = {xHCx | ∥x∥2 = 1} ⊂ C.
▶ Minimum / Maximum Phase:

φmin(C) = minz∈W(C) arg z, φmax(C) = maxz∈W(C) arg z.

Definition
A complex matrix C is in SS[α, β] if it is semi-sectorial and its
numerical range satisfies

α ≤ φmin(C) ≤ φmax(C) ≤ β, 0 < β − α < π.
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Methodology
Toeplitz Split
Any complex matrix C can be written as

C = CH + i CS, with CH, CS ∈ Hn (Hermitian).

Linear Map Rα,β

Rα,β =

[
− sinα cosα
sinβ − cosβ

]
⊗ In.

It preserves sparsity patterns and is invertible for 0 < β − α < π.

Key Lemma

C ∈ S[α,β] ⇐⇒ Rα,β

[
CH
CS

]
∈ PSD × PSD︸ ︷︷ ︸

positive semi‑definite cone（正半定锥）

.

▶ The lemma transfers PSD theory to the phase‑bounded cone
via an invertible, pattern‑preserving transform.
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Graph‑Constrained Matrices

Definition
Fix an undirected graph G = (V,E) on n vertices. Define

C n×n
G :=

{
C ∈ Cn×n ∣∣ Cij = 0 whenever (i, j) /∈ E ∪ diag

}
.

In other words, non‑zero entries of C are allowed only on edges of
G (plus the diagonal).

Toy example:

1 2 3

Matrix pattern respecting
E = {(1, 2), (2, 3)} :

C =

∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗

 ∈ C3×3
G .



Methodology

(1) Phase‑Bounded Completion
Given a partial matrix C whose known entries lie on E, decide
whether there exists

K ∈ S[α,β] s.t. Kij = Cij (∀ (i, j) ∈ E).

(2) Phase‑Bounded Decomposition
Given a matrix C ∈ C n×n

G , decide whether

C =

m∑
k=1

Ck, Ck ∈ S[α,β], rank(Ck) = 1, supp(Ck) ⊆ E.

▶ Both tasks generalise classical PSD completion/decomposition
to the phase‑bounded cone S[α,β].



Four Fundamental Cones

Definitions

SG := Cn×n
G ∩S[α,β] (sparse phase‑bounded matrices)

PG :=
{

C ∈ Cn×n
G | C[K] ∈ S[α,β] ∀ cliques K ⊆ G

}
KG :=

{
C ∈ Cn×n

G | ∃B ∈ Cn×n
Gc C + B ∈ S[α,β]

}
DG :=

{∑
k

Ck

∣∣∣ Ck ∈ S[α,β], rank(Ck) = 1, supp(Ck) ⊆ E
}

▶ All four are closed, pointed, convex
cones.

▶ DG ⊆ SG ⊆ KG ⊆ PG.

PG
KG

SG
DG

dual to DG

dual to KG



Chordal‑Graph Characterisation

Main Theorem
For 0 < β − α < π and an undirected graph G, the following
statements are equivalent:

1. G is chordal(every cycle of length ≥ 4 has a chord);
2. DG = SG;
3. KG = PG.
▶ Extends the PSD result to the phase‑bounded cone S[α,β].
▶ Provides a necessary & sufficient graph criterion for

phase‑bounded completion and decomposition.

chordal non‑chordal



Completion Criterion for Chordal Graphs
Corollary
Let 0 < β − α < π and G be chordal. A partial matrix C with
graph G admits a completion

K ∈ S[α,β] such that Kij = Cij (i, j) ∈ E(G)

iff every specified clique submatrix C[K] already lies in S[α,β].
▶ Practical meaning: only maximal cliques need to be checked
—no global SDP.

▶ For banded or tree patterns this reduces to testing a few small
principal blocks.

5×5 banded graph (w = 2). Blue triangle = a maximal clique to check.



Decomposition Criterion for Chordal Graphs

Corollary
Let 0 < β − α < π and G be chordal. A sparse matrix C ∈ C n×n

G
admits a rank‑one sum

C =

m∑
k=1

Ck, Ck ∈ S[α,β], rank(Ck) = 1, supp(Ck) ⊆ E(G)

iff the matrix itself already lies in the phase‑bounded cone:

C ∈ S[α,β].

tree pattern (chordal). Blue edge = one rank‑one component Ck.



Banded Graphs ⇒ Two PSD Sub‑Problems

Key idea: transform one complex problem into two real,
band‑preserving PSD problems, easy to solve.

Key fact for banded graphs (Lemma 3.3 + Remark 5.1)

C ∈ S[α,β] ⇐⇒

{
Cα = − sinαCH + cosαCS ∈ PSD,

Cβ = sinβ CH − cosβ CS ∈ PSD.

▶ Band‑preserving (same half‑bandwidth w).
▶ Phase‑bounded completion reduces to two banded‑PSD

sub‑problems, solvable in O(nw2) time.



Staircase Algorithm

Algorithm 5.1 (staircase fill): Start at the main diagonal and
successively complete principal submatrices of size
w+1, w+2, . . . , n via Schur complements. The result Hc is the
unique phase-bounded completion maximising det H.

n = 8, w = 2 Blue = fill order.



Conclusions & Outlook

Takeaways
▶ Extended classical PSD completion/decomposition to

phase‑bounded cones S[α,β].
▶ Chordal graphs give iff criteria; banded graphs admit an

O(nw2) staircase algorithm and a det‑max central completion.

Future Works
▶ Real‑time applications in robust control and impedance circuit

synthesis.
▶ Scalable ADMM / primal‑dual solvers for large S[α,β]‑SDPs.
▶ Exploring matrix completion and decomposition methods for

other constrained graphs, including non-chordal and
non-banded graphs.


